4,448 research outputs found

    The usefulness of Klett's inversion algorthms to simulated satellite Lidar returns

    Get PDF
    The lidar equation is a special form of the radiative transport equation in single scattering approximation and describes the return signal of a lidar. Klett's algorithm for retrieving the total extinction coefficient profile was developed for application to ground-based lidar returns by a backward integration from the far end to the near end, the range where the incident and backscattered pulse overlap totally. The applicability of Klett's algorithm to satellite backscatter lidar returns was assessed. The simulated data of a 1 J Alexandrite laser operated at about 0.7 micron and at a satellite flight level of 840 km

    Equilibration in long-range quantum spin systems from a BBGKY perspective

    Full text link
    The time evolution of ℓ\ell-spin reduced density operators is studied for a class of Heisenberg-type quantum spin models with long-range interactions. In the framework of the quantum Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, we introduce an unconventional representation, different from the usual cluster expansion, which casts the hierarchy into the form of a second-order recursion. This structure suggests a scaling of the expansion coefficients and the corresponding time scales in powers of N1/2N^{1/2} with the system size NN, implying a separation of time scales in the large system limit. For special parameter values and initial conditions, we can show analytically that closing the BBGKY hierarchy by neglecting ℓ\ell-spin correlations does never lead to equilibration, but gives rise to quasi-periodic time evolution with at most ℓ/2\ell/2 independent frequencies. Moreover, for the same special parameter values and in the large-NN limit, we solve the complete recursion relation (the full BBGKY hierarchy), observing a superexponential decay to equilibrium in rescaled time τ=tN−1/2\tau=tN^{-1/2}.Comment: 3 figure

    A simple topological model with continuous phase transition

    Full text link
    In the area of topological and geometric treatment of phase transitions and symmetry breaking in Hamiltonian systems, in a recent paper some general sufficient conditions for these phenomena in Z2\mathbb{Z}_2-symmetric systems (i.e. invariant under reflection of coordinates) have been found out. In this paper we present a simple topological model satisfying the above conditions hoping to enlighten the mechanism which causes this phenomenon in more general physical models. The symmetry breaking is testified by a continuous magnetization with a nonanalytic point in correspondence of a critical temperature which divides the broken symmetry phase from the unbroken one. A particularity with respect to the common pictures of a phase transition is that the nonanalyticity of the magnetization is not accompanied by a nonanalytic behavior of the free energy.Comment: 17 pages, 7 figure

    Analysing the relationship between ectomycorrhizal infection and forest decline using marginal models

    Get PDF
    This statistical survey originates from the problem of discovering which relationship exists between root ectomycorrhizal infection and health status of forest plants. The sampling scheme takes observations from roots that come from sectors around the tree resulting in a hierarchical association structure of the observations. Marginal regression models are used to analyze the mean effect of the ectomycorrhizal state on a response variable proxy for the health degree of the plants

    Electronic phase diagrams of carriers in self-assembled InAs/GaAs quantum dots: violation of Hund's rule and the Aufbau principle for holes

    Full text link
    We study the orbital and spin configurations of up to six electrons or holes charged into self-assembled InAs/GaAs quantum dots via single-particle pseudopotential and many-particle configuration interaction method. We find that while the charging of {\it electrons} follows both Hund's rule and the Aufbau principle, the charging of {\it holes} follows a non-trivial charging pattern which violates both the Aufbau principle and Hund's rule, and is robust against the details of the quantum dot size. The predicted hole charging sequence offers a new interpretation of recent charging experiments

    HAIL: An Algorithm for the Hardware Accelerated Identification of Languages, Master\u27s Thesis, May 2006

    Get PDF
    This thesis examines in detail the Hardware-Accelerated Identification of Languages (HAIL) project. The goal of HAIL is to provide an accurate means to identify the language and encoding used in streaming content, such as documents passed over a high-speed network. HAIL has been implemented on the Field-programmable Port eXtender (FPX), an open hardware platform developed at Washington University in St. Louis. HAIL can accurately identify the primary languages and encodings used in text at rates much higher than what can be achieved by software algorithms running on microprocessors
    • …
    corecore